Biomolecules | Quality Hinglish NEET Free Notes | Class 11 Biology
1. Introduction to Biomolecules
Definition of Biomolecules
Biomolecules naturally occurring chemical compounds hote hain jo life ka base banate hain. Ye sabhi living organisms me present hote hain aur various biological functions perform karne ke liye essential hote hain. Ye molecules mainly carbon, hydrogen, oxygen, nitrogen, phosphorus, aur sulfur se bane hote hain. Biomolecules cells ka structure banane, metabolic processes perform karne, genetic information store karne, aur signals transmit karne ke liye responsible hote hain. Simple shabdon me, biomolecules wo molecules hain jo life ko possible banate hain.
Chaar major types ke biomolecules hote hain: carbohydrates, proteins, lipids, aur nucleic acids. Har biomolecule life ke maintenance aur development me vital role play karta hai. Carbohydrates energy provide karte hain, proteins structural aur functional roles perform karte hain, lipids energy storage aur cell membranes ke components ke roop me kaam karte hain, aur nucleic acids genetic information ko store aur transfer karte hain.
Biomolecules large ya small ho sakte hain. Kuch simple hote hain aur sirf kuch atoms se bane hote hain, jabki kuch large macromolecules hote hain jo kai smaller subunits se bane hote hain. For example, simple sugar jaise glucose small biomolecule hai, jabki DNA complex aur large biomolecule hai jo kai nucleotides se bana hota hai.
Hamare biosphere me living organisms ki huge diversity hai, aur ek natural question uthta hai: Kya ye sab living beings same elements aur compounds se bane hain? Chemistry me hume elemental analysis ke baare me pata hai, jo bata sakta hai ki kisi substance me kaunse chemical elements present hain. Agar hum plant tissues, animal tissues, ya microbial material ka analysis karein, to hume elements ka ek list milta hai jaise carbon, hydrogen, oxygen, aur others, unka amount per unit mass of living tissue ke saath. Interestingly, agar hum same analysis earth’s crust (non-living matter ka example) par karein, to hume bhi ek similar element list milta hai.
To, kya living aur non-living matter me koi difference hai? Pehli nazar me lagta hai ki koi major difference nahi hai, kyunki earth’s crust me present elements living tissues me bhi hote hain. Lekin agar hum dhyan se dekhein, to ek important difference pata chalta hai: carbon aur hydrogen ka relative amount living organisms me earth’s crust ke comparison me kaafi zyada hota hai. Ye dikhata hai ki jabki dono me elements same ho sakte hain, unka proportion different hota hai, jo living beings ke structure aur function me key role play karta hai.
2. Analysis of Chemical Composition – Methods and Techniques
Living organisms me kaunse organic compounds present hain ye samajhne ke liye scientists chemical analysis karte hain. For example, ek chhota piece of living tissue—jaise vegetable ya liver—ko trichloroacetic acid (Cl₃CCOOH) me mortar aur pestle se grind kiya jata hai, jisse thick slurry ban jata hai. Jab is slurry ko strain kiya jata hai, to ye do parts me separate ho jata hai: filtrate (jo acid-soluble pool ke naam se bhi jaana jata hai) aur retentate (ya acid-insoluble fraction). Scientists ne acid-soluble pool me hazaron organic compounds find kiye hain. Advanced studies me, ek particular organic compound ko tissue se extract, separate, aur purify karna seekha jata hai, jisse scientists uska molecular formula aur probable structure determine kar sakte hain. Ye sabhi carbon-containing compounds jo living tissues me hote hain, unhe biomolecules kehte hain.
Organic compounds ke alawa, living tissues me inorganic elements aur compounds bhi hote hain. Inhe identify karne ke liye thoda different experiment kiya jata hai. Tissue ko weigh (wet weight) karke dry kiya jata hai, jisse dry weight milta hai. Agar tissue completely burn ho jaye, to saare carbon compounds CO₂ aur water vapor me convert ho jate hain aur remove ho jate hain. Remaining material, jise ash kehte hain, me inorganic elements jaise calcium, magnesium aur compounds jaise sulfates aur phosphates hote hain. Isliye, elemental analysis elements ka composition batata hai (jaise hydrogen, oxygen, carbon, chlorine) living tissue me, jabki compound analysis organic aur inorganic constituents ka type batata hai. Chemistry ke perspective se, scientists functional groups identify karte hain jaise aldehydes, ketones, aromatic compounds, lekin biological perspective se inhe amino acids, nucleotide bases, fatty acids aur others me classify kiya jata hai.
Amino acids organic compounds hote hain jisme ek amino group (-NH₂) aur ek acidic carboxyl group (-COOH) same carbon (α-carbon) se attached hota hai, isliye ye α-amino acids kehlate hain. Har α-carbon se chaar substituents attached hote hain: hydrogen, carboxyl group, amino group, aur ek variable group (R group). R group ke basis par amino acids alag hote hain, lekin proteins me sirf 20 amino acids common hote hain. For example, glycine me R hydrogen hai, alanine me methyl group, aur serine me hydroxy-methyl group. Amino acids ke chemical aur physical properties mainly unke amino, carboxyl, aur R groups par depend karte hain. Functional groups ke number aur type ke basis par, amino acids acidic (jaise glutamic acid), basic (jaise lysine), ya neutral (jaise valine) hote hain. Kuch aromatic hote hain, jaise tyrosine, phenylalanine, tryptophan. Unique property ye hai ki amino acids ke –NH₂ aur –COOH groups ionize ho sakte hain, matlab unka structure pH ke hisab se change hota hai.
Lipids ek group of organic compounds hain jo generally water me insoluble hote hain. Ek type ka lipid hai fatty acids, jisme carboxyl group (-COOH) ek variable R group se attached hota hai. R group methyl (-CH₃), ethyl (-C₂H₅), ya longer –CH₂– chain se bana ho sakta hai, 1 se 19 carbons tak. For example, palmitic acid me 16 carbons hote hain including carboxyl carbon, aur arachidonic acid me 20 carbons hote hain. Fatty acids saturated (without double bonds) ya unsaturated (with one or more C=C double bonds) ho sakte hain. Dusra simple lipid hai glycerol, jo trihydroxy propane hai. Kai lipids glycerol aur fatty acids ka combination hote hain, jisme fatty acids glycerol ke saath esterify hote hain aur monoglycerides, diglycerides, aur triglycerides banate hain. Ye commonly fats aur oils kehlate hain, melting points ke basis par. Oils ka lower melting point hota hai, jaise gingelly oil, aur ye winter me liquid rehte hain. Kuch lipids me phosphorus aur phosphorylated organic compound hota hai, jise phospholipids kehte hain, jo cell membrane ke important components hain, with lecithin as a well-known example. Certain tissues, especially neural tissues, me lipids aur complex structures ke saath present hote hain.
Lipids ke alawa, living organisms me carbon compounds hote hain jisme heterocyclic rings hote hain, jaise nitrogen bases: adenine, guanine, cytosine, uracil, thymine. Jab nitrogen base sugar se attach hota hai, to ise nucleoside kehte hain. Agar phosphate group bhi sugar se attach ho jaye, to ye nucleotide ban jata hai. Examples of nucleosides: adenosine, guanosine, thymidine, uridine, cytidine. Examples of nucleotides: adenylic acid, guanylic acid, thymidylic acid, uridylic acid, cytidylic acid. Nucleic acids jaise DNA aur RNA entirely nucleotides se bane hote hain. Inka main function genetic material ke roop me hota hai, jo living organisms me hereditary information ko store aur transmit karta hai.
3. Primary and Secondary Metabolites – Types and Functions
Chemistry ka ek sabse exciting area hai living organisms se biomolecules ka study karna. Scientists hazaron compounds, chhote aur bade, isolate kar sakte hain, unka structure determine kar sakte hain, aur kabhi-kabhi laboratory me synthesize bhi kar sakte hain. Agar hum biomolecules ki ek list banayein, to isme hazaron organic compounds shamil hote hain jaise amino acids, sugars, aur bahut saare others. Ye compounds aksar metabolites ke naam se jaane jate hain, kyunki ye organisms ke metabolic processes me involved hote hain.
Animal tissues me mainly wo compounds milte hain jo essential functions serve karte hain aur normal physiological processes ka part hote hain; inhe primary metabolites kehte hain. Lekin jab scientists plants, fungi, aur microbes ko analyze karte hain, to unhe primary metabolites ke alawa hazaron other compounds bhi milte hain. Examples me shamil hain alkaloids, flavonoids, rubber, essential oils, antibiotics, coloured pigments, scents, gums, aur spices. Inhe secondary metabolites kehte hain.
Primary aur secondary metabolites ka difference ye hai ki primary metabolites ka clear function hota hai aur ye growth, development, aur reproduction me role play karte hain, jabki kai secondary metabolites ke functions host organism me puri tarah se samjhe nahi gaye hain. Iske bawajood, kai secondary metabolites humans ke liye extremely useful hote hain, jaise rubber, medicines, spices, fragrances, aur pigments. Additionally, kuch secondary metabolites important ecological roles play karte hain, jo organisms ko survive aur apne environment ke saath interact karne me help karte hain. Jaise-jaise aap biology me aage badhenge, aap inke specific functions aur applications ke baare me aur seekhenge.
4. Biomacromolecules – Structure and Functions
Living tissues ke acid-soluble pool me jo compounds hote hain, unka ek common feature hai: unka molecular weight lagbhag 18 se 800 daltons (Da) ke range me hota hai. Dusri taraf, acid-insoluble fraction me sirf chaar main types ke organic compounds hote hain: proteins, nucleic acids, polysaccharides, aur lipids. Lipids ko chhod kar, in compounds ka molecular weight bahut high hota hai, aksar tens of thousands of daltons ke range me. Is difference ke wajah se, living organisms ke biomolecules do types me classify kiye gaye hain. Jo molecules ka molecular weight 1000 Da se kam hota hai, unhe micromolecules ya simply biomolecules kehte hain, aur jo compounds acid-insoluble fraction me milte hain, unhe macromolecules ya biomacromolecules kehte hain. Insoluble fraction ke most molecules—lipids ko chhod kar—polymeric substances hote hain.
Aap soch sakte hain ki lipids, jinka molecular weight 800 Da se kam hai, acid-insoluble ya macromolecular fraction me kyu include hote hain. Reason hai structural: lipids sirf small molecules ke roop me nahi hote, balki ye cell membranes aur other membranes me bhi organized hote hain. Jab tissue grind kiya jata hai, ye membranes vesicles me break ho jate hain, jo water-soluble nahi hote. Isliye, ye membrane fragments acid-insoluble pool ke saath separate ho jate hain, aur lipids macromolecular fraction me appear karte hain, halanki ye truly macromolecules nahi hain.
Acid-soluble pool mainly cytoplasm ka composition represent karta hai, jabki macromolecules cytoplasm aur organelles dono se aate hain. Dono fractions milkar living tissues ke chemical composition ka complete picture dete hain. Summary me, agar hum living tissue ke chemical composition ko abundance ke terms me dekhein aur compounds ko classify karein, to sabse abundant chemical water hai, uske baad various organic aur inorganic biomolecules hote hain, jo life maintain karne me specific roles play karte hain.
5. Proteins – Structure and Functions
Proteins long chains of amino acids se bante hain, jinhe polypeptides kehte hain, aur ye peptide bonds se connected hote hain. Har protein ek polymer of amino acids hota hai, lekin kyunki 20 different types ke amino acids hote hain—jaise alanine, cysteine, proline, tryptophan, aur lysine—ek protein heteropolymer hota hai, na ki homopolymer. Homopolymer me sirf ek type ka monomer repeated hota hai, jabki heteropolymer me variety of monomers ek specific sequence me arranged hote hain. Proteins ka amino acid composition jaana important hai kyunki nutrition me hum seekhte hain ki kuch amino acids essential hote hain aur hume diet se lene padte hain, jabki kuch non-essential hote hain kyunki humara body unhe produce kar sakta hai. Isliye, dietary proteins essential amino acids ka main source hote hain.
Proteins living organisms me kai vital functions perform karte hain. Kuch nutrients ko cell membranes ke across transport karte hain, kuch immune system ka part ban kar infections se fight karte hain, kuch hormones ke roop me serve karte hain, aur kuch enzymes ke roop me chemical reactions ko catalyze karte hain. Animal world me, collagen sabse abundant protein hai, jo tissues ko strength deta hai. Poore biosphere me, Ribulose bisphosphate Carboxylase-Oxygenase (RuBisCO) sabse abundant protein hai, jo photosynthesis aur global carbon cycle me crucial role play karta hai. Isliye, proteins sirf structural molecules nahi, balki functional molecules bhi hain, jo har organism me life processes ke liye essential hain.
6. Polysaccharides – Structure and Functions
Ek aur important class of macromolecules jo acid-insoluble fraction me milti hai, wo hai polysaccharides, jo long chains of sugars hote hain. Aap inhe threads ke roop me soch sakte hain jo monosaccharides se banti hain. Example ke liye, cellulose ek polymer hai jo sirf glucose units se bana hai, isliye ye homopolymer hai. Starch ek aur plant polysaccharide hai jo energy store ka kaam karta hai, jabki animals me glycogen hota hai, jo similar energy-storing polysaccharide hai. Ek aur example hai inulin, jo fructose ka polymer hai. Polysaccharide chains, jaise glycogen, me ek side reducing end aur doosri side non-reducing end hoti hai, aur kai chains branched structures banati hain. Starch helical secondary structures banata hai jo iodine (I₂) trap kar sakte hain, aur isse blue colour milta hai, jo starch-iodine test ke naam se jana jata hai, jabki cellulose me ye helical structure nahi hota aur ye iodine trap nahi kar sakta. Plant cell walls mainly cellulose se banti hain, aur materials jaise paper aur cotton fibres bhi cellulosic hote hain.
Nature me aur bhi complex polysaccharides hote hain, jo sirf simple sugars se nahi, balki amino sugars ya chemically modified sugars jaise glucosamine aur N-acetyl galactosamine se bane hote hain. Example ke liye, arthropods ke exoskeleton me complex polysaccharide chitin hota hai. Ye complex polysaccharides mostly homopolymers hote hain, matlab ye repeating units of same type of sugar se bane hote hain. Is tarah, polysaccharides dono roles serve karte hain: structural roles, jaise plant cell walls aur exoskeletons me, aur storage roles, jaise starch plants me aur glycogen animals me, jo unhe living organisms me essential biomolecules banata hai.
7. Nucleic Acids – Structure and Functions
Ek aur important type of macromolecule jo acid-insoluble fraction me milti hai, wo hai nucleic acids, jo basically polynucleotides hote hain. Polysaccharides aur polypeptides ke saath, nucleic acids kisi bhi cell ya tissue ke true macromolecular fraction ko banate hain. Nucleic acid ka building block nucleotide hai, jo teen chemically distinct components se bana hota hai: ek heterocyclic compound, ek monosaccharide sugar, aur ek phosphate group.
Nucleotides me heterocyclic compounds nitrogenous bases kehlate hain, jo include karte hain adenine, guanine, cytosine, thymine, aur uracil. Inme se adenine aur guanine purines hain, jabki cytosine, thymine, aur uracil pyrimidines hain. Inka basic ring structure respectively purine aur pyrimidine kehlata hai. Nucleotides me sugar ya to ribose, ek pentose monosaccharide, hoti hai, ya 2’-deoxyribose hoti hai. Agar nucleic acid me deoxyribose ho, to ise deoxyribonucleic acid (DNA) kehte hain, aur agar ribose ho, to ise ribonucleic acid (RNA) kehte hain. Ye nucleic acids genetic information ko store aur transfer karne ke liye crucial hain, aur ye sabhi living organisms me life ka blueprint banate hain.
8. Protein Structure – Levels and Organization
Jaise ki humne dekha, proteins heteropolymers hote hain jo amino acids ki chains se bane hote hain. Structure ka term alag-alag fields me alag meaning rakhta hai. Inorganic chemistry me ye usually molecular formula ko refer karta hai (jaise NaCl ya MgCl₂). Organic chemistry me molecule ka 2-dimensional representation dikhaya jata hai (jaise benzene ya naphthalene), jabki physicists 3-dimensional structure consider karte hain. Biology me, protein structure ko char levels me describe kiya jata hai.
Primary structure of protein amino acids ke sequence ko batata hai, jo positional information provide karta hai: kaunsa amino acid pehla hai, doosra hai, aur aise aage. Pehla amino acid N-terminal kehlaata hai, aur last amino acid C-terminal. Proteins seedhe rods nahi hote; chain specific ways me fold karti hai. Kuch regions right-handed helices banate hain, jo secondary structure kehlata hai, aur kuch regions alag shapes me fold hote hain. Long protein chain khud par fold ho kar hollow woolen ball ki tarah tertiary structure banata hai, jo protein ke 3-dimensional shape aur biological activity ke liye zaruri hai.
Kuch proteins me ek se zyada polypeptide chains ya subunits hoti hain. Ye folded subunits ek doosre ke relative arrangement ko quaternary structure kehte hain. Example ke liye, human hemoglobin (Hb) me char subunits hoti hain: do α-type aur do β-type, jo milkar functional hemoglobin protein banate hain. Ye protein structure ke levels samajhna crucial hai, kyunki protein ka function directly uske shape aur folding se linked hota hai, jo allow karta hai oxygen transport, enzyme activity, aur signaling jaise roles perform karne ke liye living organisms me.
9. Enzymes – Structure and Functions
Jaise ki humne dekha, proteins heteropolymers hote hain jo amino acids ki chains se bane hote hain. Structure ka matlab field ke hisaab se alag ho sakta hai. Inorganic chemistry me ye aam taur par molecular formula ko refer karta hai (jaise NaCl ya MgCl₂). Organic chemistry me molecule ka 2-dimensional representation dikhaya jata hai (jaise benzene ya naphthalene), jabki physicists 3-dimensional structure ko consider karte hain. Biology me, protein structure ko char levels me describe kiya jata hai.
Primary structure ek protein ka amino acids ka sequence hota hai, jo batata hai kaunsa amino acid pehla, doosra, aur aage kaun sa hai. Pehla amino acid N-terminal kehlaata hai aur last amino acid C-terminal. Proteins seedhe rods nahi hote; chain specific ways me fold karti hai. Kuch regions right-handed helices banate hain, jise secondary structure kehte hain, aur kuch regions alag shapes me fold karte hain. Long protein chain khud par fold hokar hollow woolen ball jaise tertiary structure banata hai, jo protein ke 3-dimensional shape aur biological activity ke liye zaruri hai.
Kuch proteins me ek se zyada polypeptide chains ya subunits hoti hain. Ye folded subunits ek doosre ke relative arrangement ko quaternary structure kehte hain. Example ke liye, human hemoglobin (Hb) me char subunits hoti hain: do α-type aur do β-type, jo milkar functional hemoglobin protein banate hain. Ye protein structure ke levels samajhna important hai, kyunki protein ka function directly uske shape aur folding se linked hota hai, jo allow karta hai oxygen transport, enzyme activity, aur signaling jaise roles perform karne ke liye living organisms me.
Chemical Reactions – Types and Mechanisms
Enzymes ko samajhne ke liye, hume pehle ye samajhna hoga ki chemical reaction kya hoti hai. Chemical compounds do main types ke changes se guzarte hain. Ek physical change sirf shape ya state ka change hota hai, bina chemical bonds ko todhe. Jaise ki, barf ka paani me melt hona ya paani ka vapour me evaporate hona, ye physical changes hain. Dusri taraf, ek chemical reaction tab hoti hai jab bonds break hote hain aur naye bonds bante hain, naye substances create hote hain. Jaise ki, Ba(OH)₂ + H₂SO₄ → BaSO₄ + 2H₂O ek inorganic chemical reaction hai, jabki starch ka glucose me hydrolysis ek organic chemical reaction hai.
Ek reaction ki rate se matlab hai, unit time me kitna product banta hai. Ye is formula se express kiya ja sakta hai: rate = δP/δt, aur ye temperature jaise factors se affect hoti hai. Generally, har 10°C ke change par rate double ya half ho sakti hai. Jab ek reaction catalyzed hoti hai, to ye uncatalyzed reaction se kaafi zyada fast hoti hai. Jaise, reaction CO₂ + H₂O → H₂CO₃ apne aap me bahut slow hai, sirf lagbhag 200 molecules of H₂CO₃ per hour bante hain. Lekin, enzyme carbonic anhydrase ke presence me, ye reaction dramatically speed up ho jati hai, lagbhag 600,000 molecules per second produce hote hain, jo kareeb 10 million times faster hai. Ye enzymes ki incredible power ko dikhata hai.
Hazaaron enzymes hain, aur har ek specific chemical ya metabolic reaction ko catalyze karta hai. Ek multistep reaction, jahan har step ek ya zyada enzymes dwara catalyzed hota hai, usko metabolic pathway kehte hain.
Jaise ki, glucose metabolism me, glucose (C₆H₁₂O₆) ko pyruvic acid (2C₃H₄O₃ + 2H₂O) me convert kiya jata hai ten enzyme-catalyzed steps ke through.
Ye pathway cellular respiration me study ki jati hai. Conditions ke hisaab se, ek pathway ke end products vary kar sakte hain: skeletal muscles me anaerobic conditions me, lactic acid banta hai; aerobic conditions me, pyruvic acid produce hota hai; aur yeast fermentation me, ethanol (alcohol) generate hota hai. Ye dikhata hai ki kaise enzymes aur metabolic pathways alag conditions me alag products create kar sakte hain, aur ye unki flexibility aur living organisms me importance ko highlight karta hai.
Enzyme Activity – Mechanism of Accelerating Chemical Reactions
Enzymes ko better samajhne ke liye, hume dekhna hoga ki ye apne substrates ke saath kaise interact karte hain. Jaise pehle discuss kiya gaya, ek enzyme ka 3-dimensional structure hota hai jisme ek specific active site hota hai, jo ek pocket ya cleft hai jahan substrate (S) bind karta hai. Substrate wo chemical hai jo product (P) me convert hota hai, jo symbolically is tarah represent kiya ja sakta hai: S → P. Reaction hone ke liye, substrate ko enzyme tak diffuse karna padta hai aur ek temporary enzyme-substrate complex (ES complex) banana padta hai. Ye ES complex transient hota hai, matlab ye sirf thodi der ke liye exist karta hai.
Is time ke dauran, substrate ek special structure adopt karta hai jise transition state kehte hain, jo stable substrate aur final product ke beech ka unstable intermediate hai. Is phase me substrate ke bonds break aur form hote hain, aur transformation ke baad, product enzyme se release ho jata hai. Reaction pathway me dusre unstable intermediate states bhi ho sakte hain, jinke alag-alag energy levels hote hain. Agar hum is process ko graph me represent karein, to y-axis pe potential energy aur x-axis pe substrate se product tak progression dikhaya jata hai. Substrate (S) aur transition state ke beech ka energy difference ko activation energy kehte hain, jo wo energy barrier hai jo reaction ke proceed hone ke liye overcome karna padta hai.
Yahan aata hai enzymes ka key role: ye activation energy ko lower karte hain, jisse substrate ke liye transition state tak pahunchna aur product me convert hona easier ho jata hai. Is tarah, enzymes reactions ko speed up karte hain bina overall energy difference ko substrate aur product ke beech change kiye. Agar product (P) ka energy substrate se kam hai, to reaction exothermic hai, matlab ye energy release karta hai aur spontaneously ho sakta hai. Agar reaction ko energy input chahiye, to wo endothermic hai, lekin enzymes fir bhi reaction ko facilitate karte hain by energy barrier ko reduce karke, ensuring ki process efficiently biological conditions me ho.
Enzyme Action – Mechanism and Characteristics
Har enzyme (E) ka apne substrate (S) ke liye ek specific binding site hota hai, jo ek highly reactive enzyme-substrate complex (ES) ke formation ko allow karta hai. Ye ES complex short-lived hota hai aur eventually enzyme-product complex (EP) me transform hota hai, phir finally product(s) (P) release hote hain aur enzyme apne original form me regenerate ho jata hai. Overall process ko is tarah represent kiya ja sakta hai: E + S → ES → EP → E + P.
Ek enzyme ka catalytic cycle kai steps involve karta hai. Pehle, substrate enzyme ke active site se bind karta hai, aur pocket me perfectly fit hota hai. Ye binding enzyme me ek conformational change induce karti hai, jisse active site aur bhi snugly substrate ke around fit ho jata hai. Jab substrate properly bind ho jata hai, enzyme ka active site substrate ke chemical bonds ko break karne me facilitate karta hai, aur enzyme-product (EP) complex banta hai. Finally, product(s) release hote hain, aur free enzyme ready ho jata hai dusre substrate molecule se bind karne ke liye, repeating the catalytic cycle. Ye cycle ensure karta hai ki enzymes multiple reactions efficiently catalyze kar sake bina process me consume hue, jo unke remarkable role ko highlight karta hai in speeding up biochemical reactions.
Enzyme Activity – Factors Influencing Rate of Reaction
Ek enzyme ki activity uske environment me changes se influence ho sakti hai, jo protein ke tertiary structure ko alter kar sakti hai. Key factors me temperature, pH, substrate concentration, aur specific chemicals ka presence jo enzyme activity ko regulate karte hain, shamil hain. Zyada tar enzymes effectively sirf ek narrow range ke temperature aur pH me kaam karte hain, aur har enzyme ka ek specific optimum temperature aur optimum pH hota hai jahan wo maximum activity dikhata hai. Agar temperature bahut low ho, to enzyme temporarily inactive ho jata hai, aur high temperatures protein ko denature kar sakte hain, jisse uski activity destroy ho jati hai.
Substrate concentration bhi enzyme activity ko affect karta hai. Jaise-jaise substrate concentration badhta hai, enzymatic reaction ki rate initially rise karti hai. Lekin, eventually ye maximum velocity (Vmax) tak pahunchti hai, jiske baad substrate concentration badhane se rate nahi badhti. Ye isliye hota hai kyunki saare enzyme molecules saturated ho jate hain, aur koi free enzyme bacha nahi rehta additional substrate molecules se bind karne ke liye.
Enzyme activity inhibitors se bhi affect hoti hai, jo chemicals hote hain jo enzyme activity ko reduce ya stop kar dete hain. Jab koi inhibitor substrate ke closely resemble karta hai aur substrate-binding site ke liye compete karta hai, to ise competitive inhibitor kehte hain. Ye substrate ke binding ko prevent karta hai, is tarah enzyme activity reduce ho jati hai. Ek example hai malonate, jo succinic dehydrogenase ko inhibit karta hai kyunki ye structurally succinate, enzyme ka natural substrate, ke jaise hai. Competitive inhibitors aksar bacterial pathogens ko control karne me use hote hain. Is tarah, enzyme activity ko physical conditions aur chemical interactions ke through finely regulate kiya jata hai, ensuring proper biochemical control living organisms me.
Enzymes – Classification and Naming
Hazaaron enzymes discover, isolate, aur study kiye gaye hain, aur zyada tar ko unke catalyze kiye gaye reactions ke type ke basis par classify kiya gaya hai. Enzymes generally six major classes me divide kiye gaye hain, jisme har class ke 4–13 subclasses hote hain, aur ye ek four-digit numbering system se identify kiye jate hain.
Pehli class, oxidoreductases (jo dehydrogenases ke naam se bhi jane jate hain), oxidation-reduction reactions catalyze karte hain do substrates (S aur S’) ke beech, jahan ek substrate oxidize hota hai aur dusra reduce hota hai.
Dusri class, transferases, ek chemical group (G), hydrogen ke alawa, ek substrate (S) se dusre substrate (S’) me transfer karte hain, jaise phosphate ya methyl group transfer karna.
Teesri class, hydrolases, hydrolysis reactions me involve hoti hai, aur ester, ether, peptide, glycosidic, C-C, C-halide, ya P-N bonds ko water add karke break karti hai.
Chauthi class, lyases, substrates se chemical groups remove karte hain hydrolysis ke alawa ke mechanisms se, aur aksar product me double bonds banate hain.
Paanchvi class, isomerases, isomers ka conversion catalyze karte hain, jisme optical, geometric, ya positional isomers shamil hote hain.
Aur finally, chhatti class, ligases, do molecules ko join karte hain, jaise C-O, C-S, C-N, ya P-O bonds banakar compounds ko link karna.
Ye classifications enzyme functions aur unke metabolism me roles ko samajhne me help karte hain living organisms ke andar..
Enzyme Co-factors – Types and Functions
Enzymes mostly ek ya zyada polypeptide chains se bane hote hain, lekin kai cases me, unhe catalytically active banne ke liye non-protein components chahiye hote hain, jise cofactors kehte hain. Jab enzyme ka protein part apne cofactor ke bina hota hai, to ise apoenzyme kehte hain.
Cofactors teen main types ke hote hain: prosthetic groups, coenzymes, aur metal ions.
Prosthetic groups organic molecules hote hain jo apoenzyme se tightly bound hote hain aur aksar active site ka part banate hain. Jaise, peroxidase aur catalase, jo hydrogen peroxide ko water aur oxygen me break karte hain, me haem prosthetic group ke roop me kaam karta hai.
Coenzymes bhi organic molecules hote hain, lekin inka enzyme ke saath association temporary hota hai, usually sirf catalytic reaction ke dauran. Coenzymes aksar multiple enzyme-catalyzed reactions me act karte hain, aur inme se kai vitamins se derive hote hain. Jaise, NAD aur NADP me niacin, ek vitamin, hota hai aur ye kai reactions me coenzymes ke roop me kaam karte hain.
Kuch enzymes ko metal ions ke cofactors ki zarurat hoti hai, jo enzyme ke active site aur kabhi-kabhi substrate ke saath coordination bonds banate hain, jaise zinc ek cofactor hai carboxypeptidase, ek proteolytic enzyme, ke liye.
Agar cofactor remove kar diya jaye, to enzyme apni catalytic activity kho deta hai, jo dikhata hai ki ye cofactors proper enzyme function ke liye essential hain.
10. Overview Of This Chapter🥰
Conclusion
Qualitative tests for biomolecules ek basic lekin powerful tareeka provide karte hain important compounds jaise carbohydrates, proteins, lipids, aur nucleic acids ko identify karne ke liye. Ye tests specific color reactions par depend karte hain jo alag-alag types ke biomolecules ko distinguish karne me help karte hain. Halanki ye exact amounts nahi batate, ye biology labs, medicine, food science, aur research me bahut useful hote hain. In simple tests ko samajhna advanced biochemical aur molecular studies ke liye foundation set karta hai.
Halanki living organisms me huge diversity hai, unka chemical composition aur metabolic reactions surprisingly similar hote hain. Jab hum living tissues aur non-living matter ka elemental composition analyze karte hain, to wo qualitatively similar lagta hai, lekin close look se pata chalta hai ki carbon, hydrogen, aur oxygen living organisms me relatively zyada abundant hote hain non-living matter ke comparison me. Living systems me sabse abundant chemical water hai. Living organisms me hazaaron small biomolecules hote hain jinke molecular weights <1000 Da hote hain, including amino acids, monosaccharides, disaccharides, fatty acids, glycerol, nucleotides, nucleosides, aur nitrogen bases. Inme se 20 types ke amino acids aur 5 types ke nucleotides hote hain. Fats aur oils glycerides hote hain, jahan fatty acids glycerol se esterified hote hain, aur phospholipids me ek phosphorylated nitrogenous compound bhi hota hai.
Sirf teen types ke true macromolecules commonly living systems me paaye jate hain: proteins, nucleic acids, aur polysaccharides. Lipids, unke membranes ke association ki wajah se, macromolecular fraction ka part bhi hain. Ye biomacromolecules polymers hote hain jo specific building blocks se bane hote hain. Proteins heteropolymers of amino acids hote hain, jabki nucleic acids (RNA aur DNA) polymers of nucleotides hote hain. Biomacromolecules ke structures me hierarchy hoti hai—primary, secondary, tertiary, aur quaternary. Nucleic acids genetic material ke roop me kaam karte hain, aur hereditary information parent se offspring tak carry karte hain. Polysaccharides plants aur fungi me cell wall, aur arthropods me exoskeleton banate hain, aur ye energy storage molecules (starch aur glycogen) ke roop me bhi act karte hain.
Proteins cell ke kai functions perform karte hain: kai enzymes ke roop me act karte hain, kuch antibodies, receptors, hormones, ya structural proteins ke roop me. Collagen animals me sabse abundant protein hai, aur Ribulose bisphosphate Carboxylase-Oxygenase (RuBisCO) poore biosphere me sabse abundant protein hai. Enzymes wo proteins hain jo cells me biochemical reactions ko catalyze karte hain, jabki kuch nucleic acids jinke paas catalytic activity hai, unhe ribozymes kehte hain. Protein enzymes substrate specificity show karte hain aur optimum temperature aur pH me best kaam karte hain. Ye high temperatures me denature ho jate hain. Enzymes ka function reactions ka activation energy lower karna aur reaction rate ko dramatically increase karna hai. Nucleic acids genetic information carry karte hain, ensuring ye ek generation se next generation me pass ho.
Thank You 💖
😍Learn Sufficient Notes🥰